

Stage 6

PROMPT sheet

6/1 Place value in numbers to 10million

The position of the digit gives its size

Ten millions	Millions	Hundred	Ten thousands	thousands	hundreds	tens	units
1	2	3	4	5	6	7	8

Example

The value of the digit '1' is 10 000 000

The value of the digit '2' is 2 000 000

The value of the digit '3' is 300 000

The value of the digit '4' is 40 000

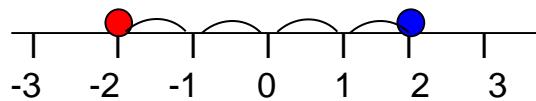
6/1 Round whole numbers

Example 1– Round 342 679 to the nearest 10 000

- o Step 1 – Find the 'round-off digit' - 4
- o Step 2 – Move one digit to the right - 2

4 or less? YES – leave 'round off digit' unchanged
- Replace following digits with zeros

ANSWER – 340 000


Example 2– Round 345 679 to the nearest 10 000

- o Step 1 – Find the 'round-off digit' - 4
- o Step 2 – Move one digit to the right - 5

5 or more? YES – add one to 'round off digit'
- Replace following digits with zeros

ANSWER – 350 000

6/2 Negative numbers

2 > -2 → We say 2 is bigger than -2

-2 < 2 → We say -2 is less than 2

The difference between 2 and -2 = 4 (see line)

Remember the rules:

- When subtracting go down the number line
- When adding go up the number line
- $8 + -2$ is the same as $8 - 2 = 6$
- $8 - +2$ is the same as $8 - 2 = 6$
- $8 - -2$ is the same as $8 + 2 = 10$

6/3 Multiply numbers & estimate to check

e.g. 152×34

COLUMN METHOD

$$\begin{array}{r}
 152 \\
 34 \times \\
 \hline
 608 \quad (\times 4) \\
 4560 \quad (\times 30) \\
 \hline
 5168
 \end{array}$$

6/3 Use estimates to check calculations

$$152 \times 34$$

$$\approx 150 \times 30$$

$$\approx 4500$$

≈ is the symbol
for 'roughly
equals'

6/3 Divide numbers & estimate to check

With a remainder also expressed as a fraction

e.g. $4928 \div 32$ **BUS SHELTER METHOD**

$$\begin{array}{r}
 0\ 2\ 8 \\
 15) 4\ 3\ 2 \\
 \underline{-3\ 0} \\
 1\ 3\ 2 \\
 1\ 2\ 0 \\
 1\ 2 \\
 \hline
 \end{array}
 \qquad
 \begin{array}{r}
 0\ 2\ 8\ r\ 12 \\
 15) 4\ 4\ 3\ 1\ 3\ 2 \\
 \underline{-3\ 0} \\
 1\ 3\ 2 \\
 1\ 2\ 0 \\
 1\ 2 \\
 \hline
 \end{array}$$

ANSWER - $432 \div 15 = 28 \text{ r } 12$

$$= 28 \frac{12}{15}$$

6/3 continued

With a remainder expressed as a decimal

$$\begin{array}{r} 028.8 \\ 15)432.0 \\ -30 \\ \hline 132 \\ -120 \\ \hline 12 \end{array}$$

$$\text{ANSWER} - 432 \div 15 = 28.8$$

$$\begin{array}{r} 028.8 \\ 15)443^{13}2.120 \\ -120 \\ \hline 120 \\ -120 \\ \hline 000 \end{array}$$

6/6 Addition

- Line up the digits in the correct columns

$$\begin{array}{r} 0.48 \\ 2.84 \\ 9.00+ \\ \hline \text{£}12.32 \end{array}$$

6/3 Use estimates to check calculations

$$\begin{array}{l} 432 \div 15 \\ \approx 450 \div 15 \\ \approx 30 \end{array}$$

6/4 Factors, multiples & primes

- FACTORS** are what divides exactly into a number

e.g. Factors of 12 are: Factors of 18 are:

1	12
2	6
3	4

1	18
2	9
3	6

The common factors of 12 & 18 are: 1, 2, 3, 6,
The Highest Common Factor is: 6

- PRIME NUMBERS** have only TWO factors

e.g. Factors of 7 are: Factors of 13 are

1	7
---	---

1	13
---	----

So 7 and 13 are both prime numbers

- MULTIPLES** are the times table answers

e.g. Multiples of 5 are: Multiples of 4 are:

5	10	15	20	25
---	----	----	----	----	-------

4	8	12	16	20
---	---	----	----	----	-------

The Lowest Common Multiple of 5 and 4 is: 20

6/5 Order of operations

Bracket

Indices

Divide

Multiply

} Do these in the order they appear

Add

} Do these in the order they appear

Subtract

$$\text{e.g. } 3 + 4 \times 6 - 5 = 22$$

first

$$(2 + 1) \times 3 = 9$$

first

6/6 Subtraction

- Line up the digits in the correct columns

$$\begin{array}{r} 0.48 \\ 2.84 \\ 9.00+ \\ \hline \text{£}12.32 \end{array}$$

6/6 Subtraction

- Line up the digits in the correct columns

$$\text{e.g. } 645 - 427$$

$$\begin{array}{r} \text{H T U} \\ 6^3 4^1 5 \\ 4 2 7 - \\ \hline 2 1 8 \end{array}$$

6/7 Equivalent fractions

- To simplify a fraction

$$\text{Example: } \frac{27}{36}$$

First find the highest common factor of the numerator and denominator – which is 9, then divide

$$\frac{27 \div 9}{36 \div 9} = \frac{3}{4}$$

- To change fractions to the same denominator

$$\text{Example: } \frac{3}{4} \text{ and } \frac{2}{3}$$

Find the highest common multiple of the denominators – which is 12, then multiply:

$$\frac{3^{x3}}{4^{x3}} = \frac{9}{12} \text{ and } \frac{2^4}{3^4} = \frac{8}{12}$$

6/8 Add & subtract fractions

- Make the denominators the same

e.g. $\frac{1}{5} + \frac{7}{10}$

$$= \frac{2}{10} + \frac{7}{10}$$

$$= \frac{9}{10}$$

e.g. $\frac{4}{5} - \frac{2}{3}$

$$= \frac{12}{15} - \frac{10}{15}$$

$$= \frac{2}{15}$$

Do not add denominators

6/9 Multiply fractions

- Write 5 as $\frac{5}{1}$
- Multiply numerators & denominators

e.g. $5 \times \frac{2}{3}$

$$= \frac{5}{1} \times \frac{2}{3}$$

$$= \frac{10}{3} = 3\frac{1}{3}$$

e.g. $\frac{4}{5} \times \frac{2}{3}$

$$= \frac{8}{15}$$

6/9 Divide fractions

- Write 5 as $\frac{5}{1}$
- Invert the fraction after \div sign
- Multiply numerators & denominators

e.g. $\frac{2}{3} \div 5$

$$= \frac{3}{2} \times \frac{1}{5}$$

$$= \frac{3}{10}$$

e.g. $\frac{4}{5} \div \frac{2}{3}$

$$= \frac{4}{5} \times \frac{3}{2}$$

$$= \frac{12}{10} = 1\frac{2}{10} = 1\frac{1}{5}$$

6/10 Multiply/divide decimals by 10, 100

thousands	hundreds	tens	units	■	tenths	hundredths	thousandths
4	3	5	2	■	6	1	7

- To multiply by 10, move each digit one place to the left

e.g. $35.6 \times 10 = 356$

Hundreds	Tens	Units	•	tenths
3	5	6	•	6

- To divide by 10, move each digit one place to the right

e.g. $35.6 \div 10 = 356 = 3.56$

Tens	Units	•	tenths	hundredths
3	5	•	6	6

- To multiply by 100, move each digit 2 places to the left
- To divide by 100, move each digit 2 places to the right

AN ALTERNATE METHOD

Instead of moving the digits
Move the decimal point the opposite way

6/11 Multiply decimals

Step 1 – remove the decimal point
Step 2 – multiply the two numbers
Step 3 – Put the decimal back in

Example: 0.06×8
 $= 6 \times 8$
 $= 48$
 $= 0.48$

6/11 Divide decimals

Use the bus shelter method
Keep the decimal point in the same place
Add zeros for remainders

Example: $6.28 \div 5$
 1.256
 $5 \overline{)6.12830}$

6/12 Fraction, decimal, percentage equivalents

LEARN THESE:

$$\frac{1}{4} = 0.25 = 25\%$$

$$\frac{1}{2} = 0.5 = 50\%$$

$$\frac{3}{4} = 0.75 = 75\%$$

$$\frac{1}{10} = 0.1 = 10\%$$

• Percentage to decimal to fraction

$$27\% = 0.27 = \frac{27}{100}$$

$$7\% = 0.07 = \frac{7}{100}$$

$$70\% = 0.7 = \frac{70}{100} = \frac{7}{10}$$

• Decimal to percentage to fraction

$$0.3 = 30\% = \frac{3}{10}$$

$$0.03 = 3\% = \frac{3}{100}$$

$$0.39 = 39\% = \frac{39}{100}$$

• Fraction to decimal to percentage

$$\frac{4}{5} = \frac{80}{100} = 80\% = 0.8$$

Change to 100

0.375

$$\frac{3}{8} = 3 \div 8 = 8) \overline{3.306040} = 0.375 = 37.5\%$$

$$\frac{9}{12} = \frac{3}{4} = 0.75 = 75\%$$

Cancel by 3

6/13 Fraction of quantity

- $\frac{4}{5}$ means $\div 5 \times 4$

e.g. To find $\frac{4}{5}$ of £40

$$\frac{4}{5} \times 40 = \frac{160}{5} = 32$$

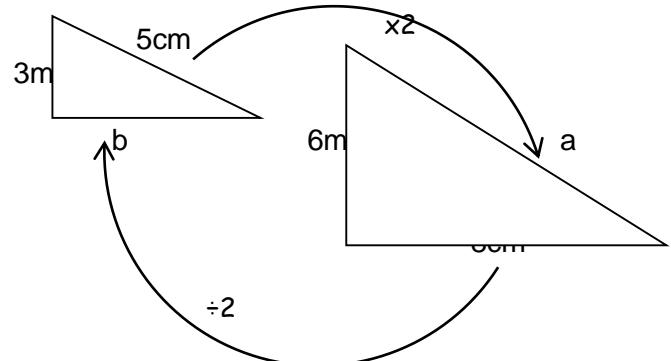
6/13 Percentage of quantity

Use only

- 50% - $\frac{1}{2}$
- 10% - $\frac{1}{10}$
- 1% - $\frac{1}{100}$

Example : To find 35% of £400

$$10\% = \frac{1}{10} \times 400 = 40$$


$$20\% = \frac{1}{5} \times 400 = 80$$

$$5\% = \frac{1}{20} \times 400 = 20$$

$$35\% = \frac{7}{20} \times 400 = 140$$

6/14 Similar shapes

When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes

$$\text{Scale factor} = 6 \div 3 = 2$$

$$\text{Length } a = 5 \times 2 = 10\text{cm}$$

$$\text{Length } b = 8 \div 2 = 4\text{cm}$$

6/14 Unequal sharing

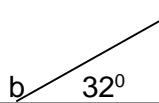
Example- unequal sharing of sweets

A gets
3 shares

=> 3 sweets
=> 12 sweets $\times 4$

B gets
4 shares

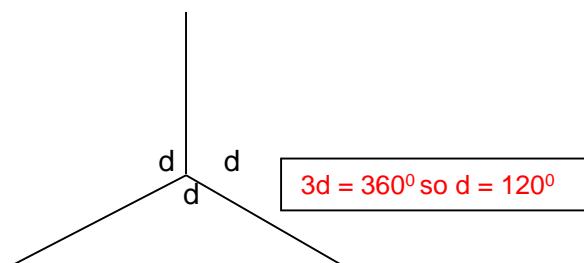
4 sweets
16 sweets $\times 4$


6/15 Express missing numbers algebraically

An unknown number is given a letter

Examples

$$2a - 4 = 8$$


$$2a = 12 \text{ so } a = 6$$

$$b + 32 = 180 \text{ so } b = 148^\circ$$

$$18 + c = 30 \text{ so } c = 12$$

$$3d = 360 \text{ so } d = 120^\circ$$

6/15 Use a word formula

Example: -Time to cook a turkey

Cook for 45min per kg weight
Then a further 45min

For a 6kg turkey, follow the formula:

$$\begin{aligned} 45\text{min} \times 6 + 45\text{min} \\ = 270\text{min} + 45\text{min} \\ = 315\text{min} \\ = 5\text{h } 15\text{min} \end{aligned}$$

6/16 Number sequences

• Understand position and term

Position	1	2	3	4
Term	3	7	11	15

Term to term rule = **+4**

Position to term rule is **$\times 4 - 1$**

(because position 1 $\times 4 - 1 = 3$)

nth term = $n \times 4 - 1 = 4n - 1$

• Generate terms of a sequence

If the nth term is $5n + 1$

1st term ($n=1$) = $5 \times 1 + 1 = 6$

2nd term ($n=2$) = $5 \times 2 + 1 = 11$

3rd term ($n=3$) = $5 \times 3 + 1 = 16$

6/17 Possible solutions of a number sentence

Example: x and y are numbers

Rule: $x + y = 5$

Possible solutions: $x = 0$ and $y = 5$

$x = 1$ and $y = 4$

$x = 2$ and $y = 3$

$x = 3$ and $y = 2$

$x = 4$ and $y = 1$

$x = 5$ and $y = 0$

6/18 Convert units of measure METRIC

When converting measurements follow these rules:

- When converting from a **larger unit to a smaller unit** we **multiply** (x)
- When converting from a **smaller unit to a larger unit** we **divide** (÷)

UNITS of LENGTH

$$10\text{mm} = 1\text{cm}$$

$$100\text{cm} = 1\text{m}$$

$$1000\text{m} = 1\text{km}$$

UNITS of TIME

$$60\text{sec} = 1\text{ min}$$

$$60\text{min} = 1\text{ hour}$$

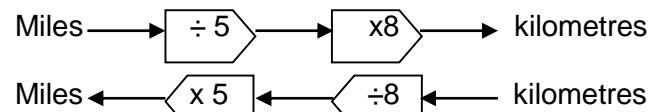
$$24\text{h} = 1\text{ day}$$

$$365\text{days} = 1\text{ year}$$

UNITS of MASS

$$1000\text{g} = 1\text{kg}$$

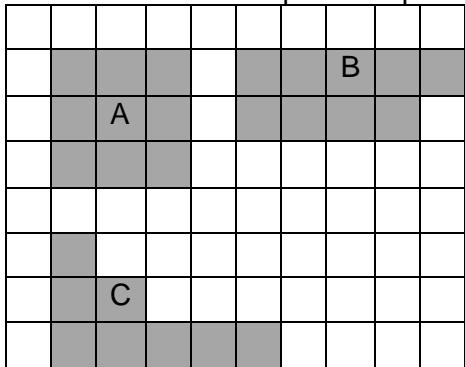
$$1000\text{kg} = 1\text{tonne}$$


UNITS of VOLUME

$$1000\text{ml} = 1\text{ litre}$$

$$100\text{cl} = 1\text{litre}$$

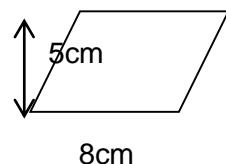
6/19 Convert units of measure METRIC/IMPERIAL


LEARN: $5 \text{ miles} = 8 \text{ km}$

6/20 Perimeter and area of shapes

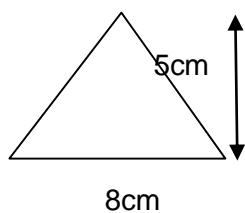
Shapes can have the SAME area but different perimeters

The area of each shape is 9 squares



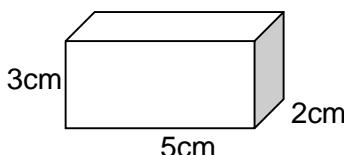
Perimeter of each shape is different
A – 12; B – 14; C – 16

6/21 Area of parallelogram & triangle


o Area of parallelogram

$$\begin{aligned} \text{Area of parallelogram} &= b \times h \\ &= 8 \times 5 \\ &= 40 \text{cm}^2 \end{aligned}$$

o Area of triangle (½ a parallelogram)

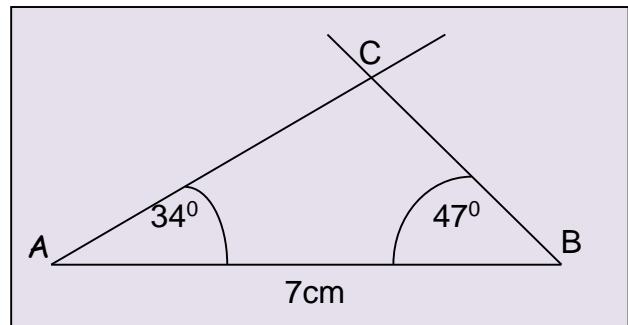

$$\begin{aligned} \text{Area of triangle} &= \frac{b \times h}{2} \\ &= \frac{8 \times 5}{2} \\ &= 20 \text{cm}^2 \end{aligned}$$

6/22 Volume

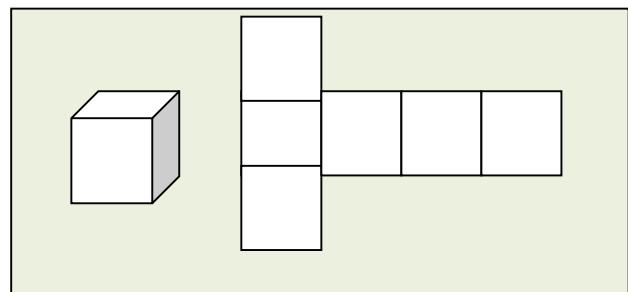
o Volume of cuboid

$$\begin{aligned} \text{Volume} &= l \times w \times h \\ &= 5 \times 3 \times 2 \\ &= 30 \text{cm}^3 \end{aligned}$$

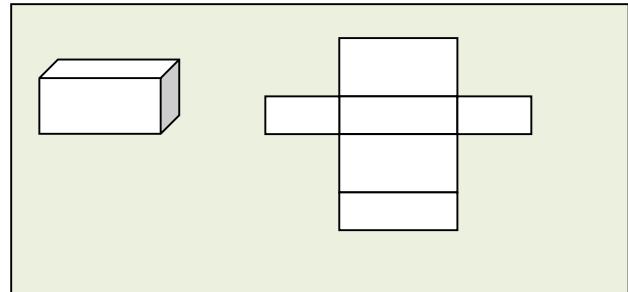
o Volume of cube


$$\begin{aligned} \text{Volume} &= l \times w \times h \\ &= 3 \times 3 \times 3 \\ &= 27 \text{m}^3 \end{aligned}$$

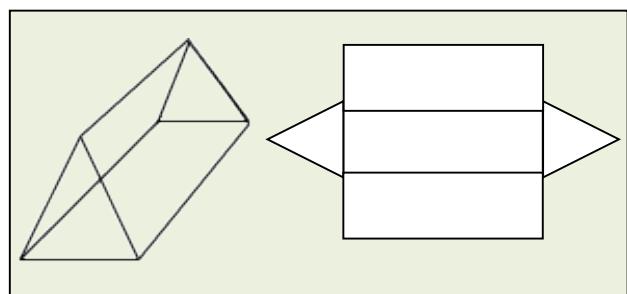
6/23 Construct 2D shapes


Example : Triangle with side and angles given

- o Draw line AB = 7cm
- o Draw angle 34° at point A from line AB
- o Draw angle 47° at point B from line AB
- o Extend to intersect the lines at C

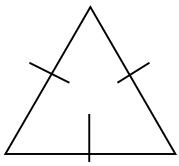


6/23 Construct 3D shapes

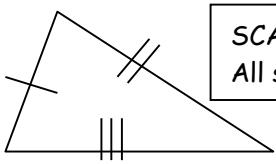

CUBE & its net

CUBOID & its net

TRIANGULAR PRISM & its net

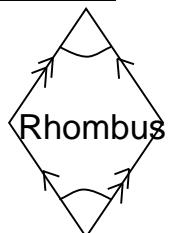
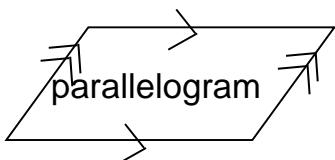


6/24 Properties of shapes


TRIANGLES – sum of angles = 180^0

ISOSCELES triangle
2 equal sides & 2 equal angles

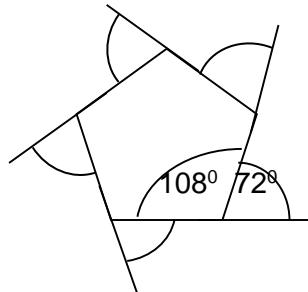
EQUILATERAL triangle
3 equal sides & ALL angles 60^0

SCALENE triangle
All sides & angles different

QUADRILATERALS – sum of angles = 360^0

rectangle


kite

REGULAR POLYGONS – all sides the same

- Polygons have straight sides
- Polygons are named by the number of sides
 - 3 sides – triangle
 - 4 sides – quadrilateral
 - 5 sides – pentagon
 - 6 sides – hexagon
 - 7 sides – heptagon
 - 8 sides – octagon
 - 9 sides – nonagon
 - 10 sides – decagon

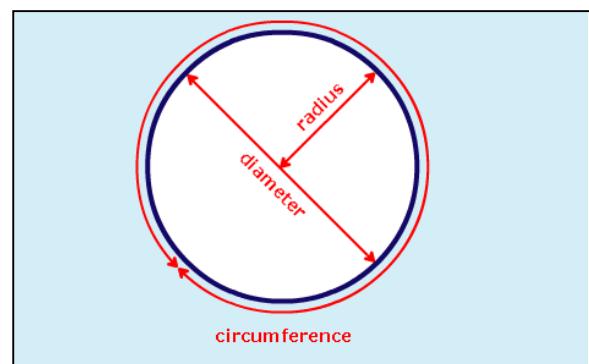
- Sum of exterior angles is always 360^0

○

- interior & exterior angle add up to 180^0

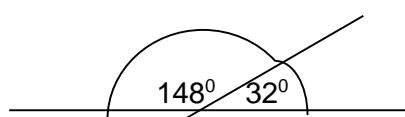
- the interior angles add up to:

Triangle $= 1 \times 180^0 = 180^0$

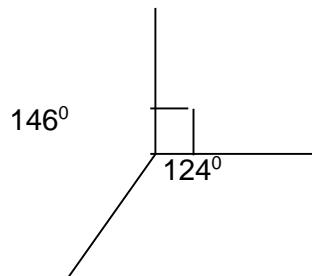

Quadrilateral $= 2 \times 180^0 = 360^0$

Pentagon $= 3 \times 180^0 = 540^0$

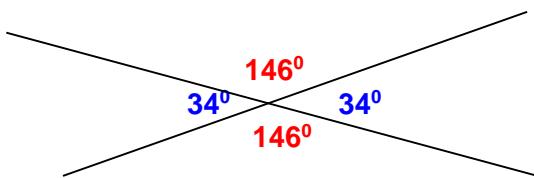
Hexagon $= 4 \times 180^0 = 720^0$ etc


6/25 Parts of a circle

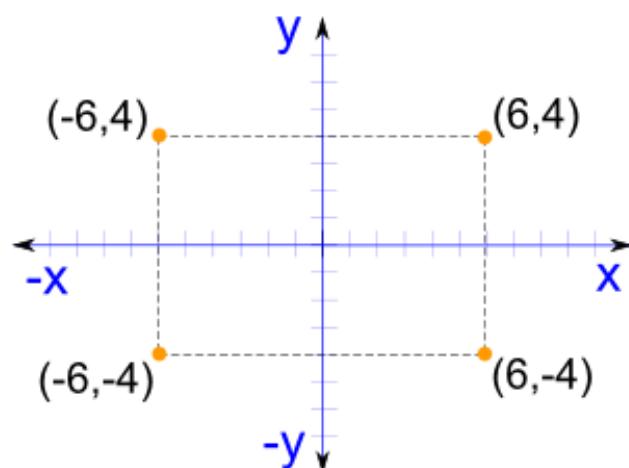
- The circumference is the distance all the way around a circle.
- The diameter is the distance right across the middle of the circle, passing through the centre.
- The radius is the distance halfway across the circle.
- The radius is always half the length of the diameter. ($d = 2 \times r$) or ($r = \frac{1}{2} \times d$)


6/26 Angles and straight lines

- Angles on a straight line add up to 180°

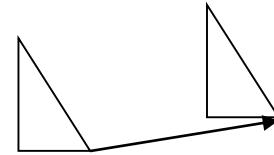

$$148^\circ + 32^\circ = 180^\circ$$

- Angles about a point add up to 360°

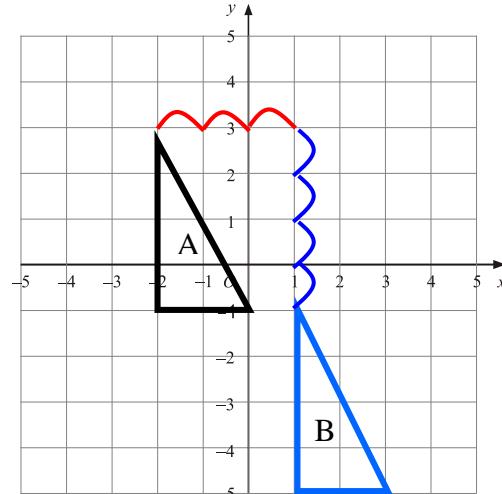


$$146^\circ + 90^\circ + 124^\circ = 360^\circ$$

- Vertically opposite angles are equal

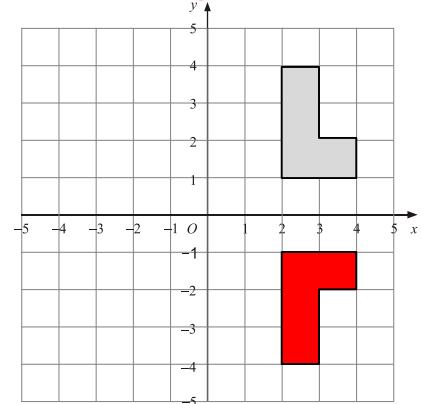


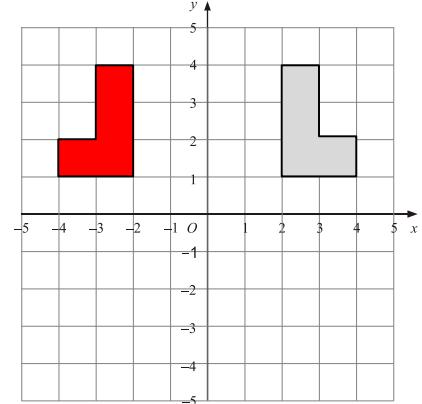
6/27 Position on a co-ordinate grid



6/28 Transformations

- Translation** - A shape moved along a line

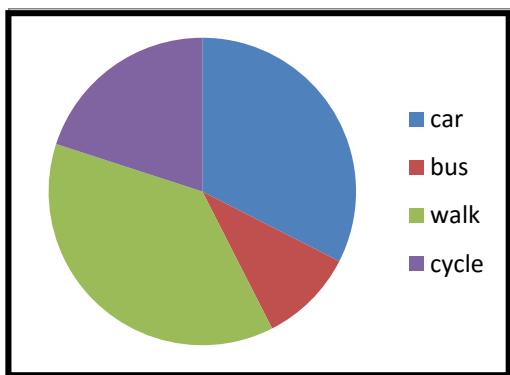

Example – Move shape A 3 right & 4 down
Can also be written as a vector $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$ Right Down


Notice:

- The new shape stays the same way up
- The new shape is the same size

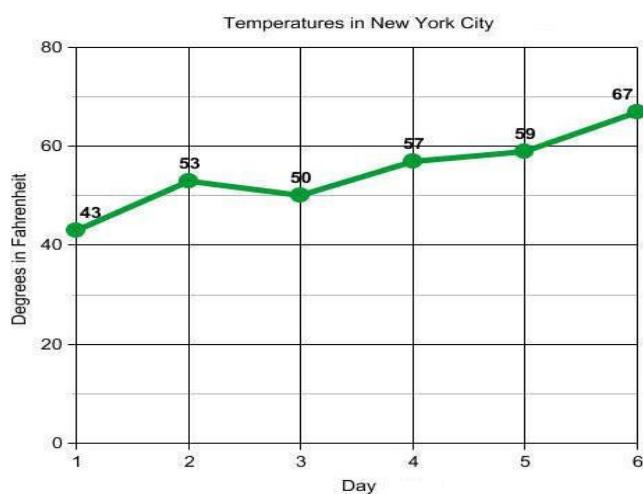
- Reflect a shape in x-axis**

- Reflect a shape in y-axis**



6/29 Graphs

○ Pie chart


Transport	Frequency	Angle
Car	13	$13 \times 9 = 117^\circ$
Bus	4	$4 \times 9 = 36^\circ$
Walk	15	$15 \times 9 = 135^\circ$
Cycle	8	$8 \times 9 = 72^\circ$

Total frequency = 40
 $360^\circ \div 40 = 9^\circ$ per person

○ Line graph

Line graphs show changes in a single variable – in this graph changes in temperature can be observed.

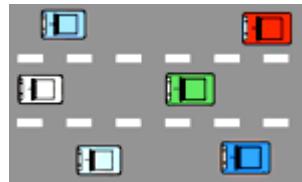
6/30 The mean

The mean is usually known as the average.
The mean is not a value from the original list.
It is a typical value of a set of data

Mean = total of measures \div no. of measures

e.g.- Find mean speed of 6 cars travelling on a road

Car 1 – 66mph


Car 2 – 57mph

Car 3 – 71mph

Car 4 – 54mph

Car 5 – 69mph

Car 6 – 58mph

$$\text{Mean} = \frac{66+57+71+54+69+58}{6}$$

$$= \frac{375}{6}$$

$$= 62.5\text{mph}$$

Mean average speed was 62.5mph